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Abstract: Power system stability is the ability of an electric power system, for a given initial operating condition, to 

regain a state of operating equilibrium after being subjected to a physical disturbance, with most system variables 

bounded so that practically the entire system remains intact. As the size of interconnected power system is 

increasing, it is becoming more difficult to maintain synchronization between various parts of the power system. 

This paper focuses on transient stability analysis on the basis of swing equation by using three different numerical 

integration methods. 
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 I.     INTRODUCTION 

The importance of power system stability is increasingly becoming one of the most limiting factors for system 

performance. Recent major black-outs across the globe caused by system instability, even in very sophisticated and secure 

systems, illustrate the problems facing secure operation of power systems. With increase automation and use of electronic 

equipment, the quality of power has gained utmost importance, shifting focus on the concepts of voltage stability, 

frequency stability, inter-area oscillations etc.  

By the stability of a power system, we mean the ability of a system to remain in operating equilibrium, or synchronism, 

while disturbances occur on the system. A power system must provide reliable and uninterrupted service to the connected 

loads. Power supply must be reliable and secure i.e. ideally, a constant voltage and frequency must be fed in loads at all 

times.  

The foremost requirement of reliable service is to keep the synchronous generators running in parallel and with adequate 

capacity to meet the load demand. Synchronous machines do not easily fall out of step under normal conditions. A second 

requirement of reliable electrical service is to maintain the integrity of the power network. The high-voltage transmission 

system connects the generating stations and the load centers. Power-system stability is a term applied to alternating-

current electric power systems, denoting a condition in which the various synchronous machines of the system remain in 

synchronism, or "in step," with each other. Conversely, instability denotes a condition involving loss of synchronism, or 

falling "out of step."  

For convenience of analysis, stability problems are generally divided into two major categories: Steady-state stability and 

Transient stability. 

II.     STUDY OF SWING EQUATION 

A. Stability 

Power-system stability is a term applied to alternating current electric power systems, denoting a condition in which the 

various synchronous machines of the system remain in synchronism, or "in step," with each other. Readjustment of 

voltage angles of synchronous machine is required because power system operating under steady load condition is 

perturbed. If this condition occurs and creates an unbalance between the load and system generation, new steady state 

operating condition is established with subsequent adjustment of voltage angles.  
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The perturbation may be in the form of major disturbance like: small load, random load changes under normal conditions, 

loss of generator, fault or loss of line or both. To establish the correct condition, fresh adjustment is needed with the new 

operating condition called transient period. The major criteria of stability is to maintain synchronism at the end of the 

transient period for the synchronous machines. 

For stability, the system oscillations must be damped, so that, the inherent forces in the system tends to reduce 

oscillations. After a disturbance, the stability problem is concerned with the behavior of synchronous machines. The 

stability problem can be categorized into steady state and transient state. 

B. Swing Equation  

The relative position of the resultant magnetic field axis and rotor axis is fixed under normal conditions. Power angle 

or torque angle is the angle between the two axes. During disturbance, a relative motion begins because of the 

deceleration or acceleration w.r.t the synchronously rotating air gap mmf. If, after this oscillatory period, the rotor 

locks back into synchronous speed, then, the generator will maintain its stability. If there is no net interchange of 

power then the rotor returns to its original position. Swing equation is the mathematical structure to describe relative 

motion. 

 Swing equation in terms of inertia constant M, 
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 Relationship between electrical power angle (δ) and mechanical power angle (δm), and electrical speed and 

mechanical speed of synchronous machine, where p is the pole number. 
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 Swing equation in terms of electrical power angle δ :  
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 Converting the swing equation into per unit system  
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, here H is inertia constant 

III.     STEADY STATE STABILTY 

Steady state stability refers to the ability of power system to maintain its synchronism and return to its original state when 

little disturbance occurs. It is not affected by any control efforts. Stability of a power system remains stable with 

conventional excitation and governor controls. 

A. Analysis of Steady-State Stability By Swing Equation 

 Starting from swing equation: 
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 Introduce a small disturbance Δδ 
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 Derivation is from δ=δ0+Δδ 

 Simplify the nonlinear function of power angle δ 

 Swing equation in terms of Δδ 
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B. DampingTorque  

Phenomena: When there is a difference in angular velocity between rotor and air gap field, an induction torque will be set 

up on rotor tending to minimize the difference of velocities. The damping power is approximately proportional to the 

speed deviation. 

 Introduce a damping power by damping torque : 
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 Introduce the damping power into swing equation. 

 Characteristic equation is: 
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 Roots of swing equation : 
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Fig. 1 Diagram for Steady State Problem 
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IV.     TRANSIENT STABILTY 

Transient stability refers to the stability of a power system subject to a sudden and severe disturbance beyond the 

capability of the linear and continuous supplementary stability control, and the system may lose its stability at the 

first swing unless a more effective countermeasure is taken, usually of the discrete type, such as dynamic resistance 

braking or fast valving for the electric energy surplus area, or load shedding for the electric energy deficient area. For 

transient stability analysis and control design, the power system must be described by nonlinear differential 

equations. In most disturbances, oscillations are of such magnitude that linearization is not permissible and the 

nonlinear swing equation must be solved. 

A. Numerical Solution of Swing Equation 

The transient stability analysis requires the solution of a system of coupled non-linear differential equations. In general, 

no analytical solution of these equations exists. However, techniques are available to obtain an approximate solution of 

such differential equations by numerical methods and one must therefore resort to numerical computation techniques 

commonly known as digital simulation. Some of the commonly used numerical techniques for the solution of the swing 

equation are: 

 Euler modified method 

 Runga – Kutta method 

 Point by point method 

The swing equation can be transformed into state variable form. And the two first order differential equations to be solved 

to obtain solution for the swing equation are:  
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A. (a)  Modified Euler’s method can be applied to above equations as explained below 
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Numerical errors are introduced because of discarding higher–order terms in Taylor’s expansion. Errors can be 

decreased by choosing smaller values of step size. If a step size is too small, it will increase computations, which can 

lead to large errors due to rounding off. The average value of the two derivatives is used to find the corrected values.  
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Fig. 2 Diagram for Transient State Stability design 

A. (b) Runga – Kutta’s Fourth order method can be applied to equations as explained below : 

Starting from initial value δ0, ω0, t0 and a step size of Δt, the formulae are as follows: 
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δ1 and ω1 are used as initial values for the successive time step.  

 

A. (c ) Point By Point Method  

It is always required to know the critical clearing time corresponding to critical clearing angle so as to design the 

operating times of the relay and circuit breaker so that the time taken by them should be less than the critical clearing 

time for stable operation of the system. 

So the point-by-point method is used for the solution of critical clearing time associated with critical clearing angle and 

also for the solution of multi machine system. The step-by-step or point-by-point method is the conventional, 

approximate but proven method. This involves the calculation of the rotor angle as time is incremented. The accuracy of 

the solution depends upon the time increment used in the analysis. 
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The following parameters are evaluated for each interval (n): 

The accelerating power, Pa (n-1) =Ps - Pe(n-1) 

From the swing equation, α(n-1)=Pa(n-1) / M 
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Fig. 3 Diagram for study of Point-by-Point Method 

V.     SIMULATION 

For Steady State Response, a Synchronous generator is taken having a suitable inertia constant and transient reactance 

which is connected to an infinite bus through a purely reactive circuit where the reactances are marked on a common 

system base. The simulation is done through MATLAB 8.3(R2014a) 

 
Fig. 4  Rotor angle and Frequency vs Time 
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For Transient State Response, a Synchronous generator is taken having a suitable inertia constant and transient reactance 

which is connected to an infinite bus through a purely reactive circuit where the reactances are marked on a common 

system base. The swing curve is used to determine the system stability and critical clearing time. The simulation is done 

through MATLAB 8.3(R2014a) and SIMULINK. Simulation was repeated for different numerical methods and swing 

curves were obtained. 

 

Fig. 5 Swing curve using Euler’s Method and Runga-Kutta’s Method respectively for fault cleared at 0.2s 

 

Fig. 6 Swing curve using Euler’s Method and Runga-Kutta’s Method respectively for fault cleared at 0.6s 
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Fig. 7 Swing curve using Euler’s Method and Runga-Kutta’s Method respectively for fault cleared at 0.3s 

 Simulation For Point by Point Method:  

The calculations for Point-by-point method have been programmed using MATLAB 8.3(R2014a) with a suitable 

Generator over a double circuit line to an infinite bus. A three phase circuit occurs at the midpoint of one of the 

transmission line. The fault is cleared by simultaneous opening of breakers. 

 

Fig. 8 Swing curve using Point-by-point Method for fault cleared at 0.225s and 0.6s respectively 
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VI.     CONCLUSION 

It can be seen that transient stability is greatly affected by the type, and location of a fault, so a power system analyst, must 

at the very outset of a stability study, decide on these two factors. For the case of one-machine system connected to infinite 

bus, it can be seen that an increase in the inertia constant M of the machine reduces the angle through which it swings in a 

given time interval offering a method of improving stability.  But this can’t be employed in practice because of economic 

reasons and for the reason of slowing down of the response of the speed-governor loop apart from an excessive rotor 

weight. For a given clearing angle, as the maximum power limit of the various power angles is raised, it adds to the 

transient stability limit of the system. The maximum steady power of a system can be increased by raising the voltage 

profile of a system and by reducing the transfer reactance. While this approach is not suited for a detailed study of large 

systems, it is useful in gaining a physical insight into the effects of field circuit dynamics and in establishing the basis for 

methods of enhancing stability through excitation control.  

 

Machine Data: 

 

1) For Steady State Response of Synchronous Generator: [ E = 1.50, V= 1.0; H= 7.94; X=0.60; Pm=0.8; D=0.138; f = 

50; ] 

2) For Transient State Response of Synchronous Generator: [ Pm = 0.80;  E = 1.37;  V = 1.0; X1 = 0.60; X2 = 1.75; X3 

= 0.75; H = 4.0; f = 50; final time = 1; step size = 0.05; ]  
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